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Nonlinear Fluctuations, Separation of Procedures, 
and Linearization of Processes 
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A concept of separation of procedures is introduced to study cooperative 
phenomena theoretically. Some typical important examples of this concept are 
presented to clarify its usefulness; Kubo's stochastic Liouville equation, some 
generalized diffusionlike equations, van Kampen's expansion, Kubo's exten- 
sivity, Prigogine's entropy production, the scaling theory of transient 
phenomena based on the Lie algebra, and Suzuki's CAM theory of cooperative 
phenomena are discussed from the new viewpoint of separation of procedures. 
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1. I N T R O D U C T I O N  

M a n y  interes t ing phenomena ,  such as phase  t ransi t ions ,  occur  due to the 
nonl inear i ty  of  the re levant  system, as is well known.  (1 5) However ,  wha t  is 

the nonl inear i ty?  It  m a y  depend  on the represen ta t ion  of  each 
phenomenon .  F o r  example ,  a non l inea r  Langevin  equa t ion  (6-8) of the form 

d 
- - x = ~ ( x ) + t l ( t ) ,  ( q ( t )  q ( t ' ) ) = Z e 6 ( t - t ' )  (1) 
dt 

with a non l inear  funct ion c~(x) and  a G a u s s i a n  white noise q(t) is 
equivalent ly  descr ibed by the fol lowing F o k k e r - P l a n c k  equa t ion  (6 8): 

~t p(x ,  t) = - ~(x) + ~ ~ P(x,  t) (2) 
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This is linear with respect to the distribution function P(x, t). Similarly, the 
deterministic nonlinear differential equation dx/dt = a(x) can be transfor- 
med into an infinite number of linear differential equations by the 
Poincar6-Carleman method. ~9) This corresponds to the special case s = 0 in 
(1) and (2). In general, nonlinear equations can be expressed by linear ones 
in a wider representation space. A similar situation appears in the 
classification of Markovian and non-Markovian processes. 

Next we classify nonlinearity into two categories, namely weak non- 
linearity, which can be transformed into a linear case by a monotonic 
transformation of variables, and strong nonlinearity, which cannot be trans- 
formed into a linear case by any monotonic transformation. 

It will be instructive to discuss here a well-known example, namely the 
van der Waals equation. The equation of state for ideal gas is given by 
P V = N k  BT (where P, V, N, and T denote the pressure, molar volume, 
Avogadro number, and temperature, respectively). This is a linear equation 
with respect to the pressure and number density p=N/V.  Maxwell 
introduced a transformation V ~  V - b  to obtain his equation of state 
P ( V - b ) = N k B T  in order to take into account the scale of molecules 
or their hard-core effect. His equation has only weak nonlinearity and 
consequently no phase transition appears in his equation. In 1873, 
van der Waals proposed the following celebrated equation of state: 

P+ ( V - b ) = N k B T  (3) 

This is rewritten as 

NkR T a 
P - V - ~  V 2 - f ( V )  - g(V) (4) 

Clearly, this shows strong nonlinearity and it can describe the gas-liquid 
phase transition qualitatively, as is well known. It should be noted here 
that the above two terms f (V)  and g(V) in (4) give remarkable effects in 
different regions of the volume V, and consequently that strong non- 
linearity appears in (3) or (4). 

Strong nonlinearity can often appear as a competition between two 
kinds of weak nonlinearity that each shows an effect in different regions of 
the relevant variable. This remark will be useful in explaining or discover- 
ing interesting nonlinear phenomena. For  example, the so-called Alder 
transition ~1~ of hard-core systems can be interpreted as a typical example 
of the above general situation, namely the boundary condition that the 
relevant system is confined to a finite volume (even a periodic boundary 
condition) plays the role of an attractive interaction for long distances. 
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As was emphasized by Prigogine, (1-4) fluctuations play an essential 
role in the formation of macroscopic order. (~8) In particular, nonlinear 
fluctuations are substantial in the modern analysis of phase transitions 
and critical phenomena. (5) Thus, the entanglement of nonlinearity and 
fluctuations is one of the most important subjects in statistical physics, as 
will be discussed later in detail. 

One of the main purposes in the present paper is to introduce the 
concept 2 of "separation of procedures" or "linearization of processes" to 
study nonlinear phenomena theoretically, as will be explained generally in 
Section 2. Many applications of this concept to physical problems will be 
given in the succeeding sections. 

2. S E P A R A T I O N  OF P R O C E D U R E S  A N D  L INEARIZAT ION 
OF PROCESSES 

What is theoretical physics? It aims at understanding the laws of 
nature and its mechanisms in order to control various kinds of interesting 
phenomena. The simplest way to understand them is to find some linear 
relation between the cause and result. When fundamental equations to 
describe phenomena are nonlinear and complicated, we have to solve them 
analytically or numerically. What do we mean by solving nonlinear 
equations analytically? This means, I believe, nothing but transforming 
original nonlinear equations into linear ones by introducing some 
appropriate nonlinear transformation of variables. Namely, it is the 
linearization of processes. This strategy is very useful in studying nonlinear 
systems theoretically, as will be exemplified later. 

More conceptually or from a methodological point of view, it is con- 
venient to introduce the concept of separation of procedures, by which we 
mean separating our procedures to solve the relevant nonlinear problems into 
several steps, each of which is described by an explicit tractable analytic 
expression. 

More explicitly, for example, we consider some exponential procedure 
exp(A +B)  for noncommutable operators A and B. If the exponential 
operator exp(A + B) is decomposed into the form 

exp(A + B ) = f ( A ) h ( B )  (5) 

then we have separation of procedures. Furthermore, if f (A) and h(B) are 
tractable, the problem to operate exp(A + B) to an arbitrary state can be 

2 This idea was briefly reported at the memorial lecture (in Japanese) dedicated to the late 
Dr. H. Yukawa in Kyoto, March 26, 1982. 
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solved analytically, as will be discussed explicitly later. A more interesting 
situation will be asymptotic separation of procedures, namely, for example 

exp(A + B) _~ fasym(A) hasym(B ) (6) 

in some appropriate asymptotic limit, such as the scaling limit. (6'H-15) 
Moreover, the concept of separation of procedures is very useful as a 

guiding principle to solving nonlinear problems theoretically. Many typical 
examples will be given in the succeeding sections. 

3. K U B O ' S  S T O C H A S T I C  LIOUVILLE E Q U A T I O N  

It will be instructive to discuss here Kubo's method of stochastic 
Liouville equations (16) from our new point of view, namely on the basis of 
the concept of separation of procedures. 

We consider the following Langevin equation or stochastic differential 
equation of Stratonovich type(V): 

d 
- -  x = F ( x ,  t l ( t ) ,  t )  (7) 
dt 

where t/(t) is a random field. 
Kubo (16) introduced the probability density p(x, t) for each definite 

realization of q(t). The true distribution function P(x, t) is obtained by 
taking the average of p(x, t) over the distribution of the noise t/(t). That is, 
we have 

P(x, t )=  (p(x, t) ) (8) 

Clearly, (16) p(x, t) satisfies the following conservation of the probability: 

~ p(x, t )=  -~xx [F(x, q(t), t)p(x, t)] - s  t) (9) 

This is the Kubo stochastic Liouville equation. It should be remarked that 
the two effects of the initial distribution P(x, 0) and the random noise are 
treated as two separate procedures in the above Kubo method. This has 
several merits in formal treatments of stochastic processes and their explicit 
applications. 

In fact, the formal solution of (9) is given by 

p(x, t) = exp + s ds. P(x, O) (10) 
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using the time-ordered exponential defined by (17) 

exp+ ~(s) ds = 1 + dr1 dr2.., dt, ~LP(tl)... ~(tn) (11) 
n = l  

Thus, our desired probability function P(x, t) is given by 

( ;o ) P ( x , t ) = ( p ( x , t ) ) =  exp+ LP(s)ds P(x,O) (12) 

More explicitly, we consider the following stochastic differential 
equation: 

d 
~tx(t)=c~(x, t) + fl(x, t) tl(t ) (13) 

with the Gaussian white noise r/(t) satisfying the relation 

(~/(t) ~/(t') ) = 2e6(t- t') (14) 

Then we obtain immediately ~ the following Fokker-Planck equation 

- ~ P ( x , t ) = [ -  ~---s163 (15) 

Thus, Kubo's stochastic Liouville equation is a typical example of 
separation of procedures. 

4. S E P A R A T I O N  OF P R O C E D U R E S  IN GENERALIZED 
D IFFUSIONLIKE  E Q U A T I O N S  

For simplicity we consider first the following linear diffusionlike 
equation: 

~ cp(r, t )=  7q~(r, t )+  DV2r t )+  q(r, t) (16) 

where r/(r, t) denotes random noise. 
It is easily shown Cs) that the above equation is equivalent to the 

following coupled equations: 

q~(r, t )=  (~9(r, t))~ (17) 
and 

8 
~t ~,(r, t) = 74,(r, t) + ~(t)" V~,(r, t) + r/(r, t) (18) 
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where ~(t) is an auxiliary stochastic variable. (18) It is assumed to be 
Gaussian and white; namely 

( ~,(t) ~j(t') ) = 2Dfij6(t - t') (19) 

In fact, the formal solution of (18) is given by 

O(r , t )=exp 7t+ {(s) ds 'V  

x { fo 'eXp[-TS- fo{(U)  du'V]tl(r ,s)ds+lp(r,O)} (20) 

Then, we have 

~o(r, t )=  (0(r,  t))r 

=eYt+t~163 ds+q~(r, 0)] (21) 

with ~o(r, 0 )=  (~(r, 0 ) ) r  0). Equation (21) is  clearly the formal 
solution of (16). 

Now we consider the following nonlinear diffusionlike (diffusion-reac- 
tion) equation: 

3 
~t ~0(r, t) = ~(~0(r, t)) + DV2~p(r, t) + q(r, t) (22) 

where ~(x) denotes a nonlinear function such as ~(x) = 7 x -  gx 2 o r  ~ ( x )  = 

7 x -  g x  3. As is well known, it is extremely difficult to solve (22) analytically. 
Thus, we consider here the following auxiliary equation: 

0t 0(r, t) = ~(~(r, t ) )+ ~(t)-V~,(r, t) + q(r, t) (23) 

with the auxiliary Gaussian white noise ~(t). Rosen (18) showed that the 
solution of (23) without random noise q(t) under the initial condition 
~(r, 0) = ~0(r, 0) is a rigorous lower bound on the solution of (22) without 
random noise q(t). 

The purpose of the present section is to try to solve the auxiliary 
equation (23) by applying the concept of separation of procedures to the 
present problem. To approximate (22) by (23) is itself an approximate 
separation of procedures. 

Now Eq. (23) is rewritten as 

~ ( r ,  t) = ~(~(r, t)) + q(r - W(t), t) (24) 
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/~(r, t) = ~(r  - w ( t ) ,  t) (25) 

W ( t ) =  {(s) ds (26) 

As it is difficult to solve (24) for a general type of nonlinear function 
c~(x), we study here the following typical example: 

0 
0t ~(r, t) = 7~(r, t) - g~2(r ,  t) + 0(r, t) (27) 

with 

0(r, t) = r/(r - W(t), t) (28) 

Without loss of generality, we may put g = 1 in (27), and consequently our 
problem is reduced to solving the following nonlinear Langevin equation: 

d 
- -  x = 7 x  - x 2 + r / ( t )  ( 2 9 )  
dt 

By the nonlinear transformation 

x ( t )  = ~  log u(t)  = u( t )  (30) 

we obtain the following linear equation 

d 2 d 
-~ u(t) = ~ -~ u(t) + ~(t) u(t) (31) 

If we put v(t)  = du(t) /dt ,  then Eq. (29) is transformed into 

d 
X(t) = A ( t )  X(t) (32) 

where 

and i)  33, 
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Then, the formal exact solution of (32) is given by 

X(t)=[exp+ fo'A(s)ds]X(O) 

Consequently we have 

x(t) = v(t)/u(t) = X2(t)/X,(t ) 

More explicitly, we have the series expansion 

u(t) = ~ un(t); 
n = 0  

where un(t ) is given by 

Suzuki 

(34) 

(35) 

(36) 

go(r, t) - (g~(r, t ) )r  

3 See note added in proof of Ref. 8. 

(40) 

(41) 

is given by 

& go(r, t) = 7go(r, t) - ggo2(r, t) + DV2go(r, t) + q(r, t) 

Then, an approximate solution of the stochastic nonlinear diffusion 
equation 

u,(t) = dtl dSl e~("-s~lrl(sl) un l(Sl) 

= fodtl fo' dSa ... fo" ~ dtn fo~ 

x exp[~(tl  + -.. + t , - s l  . . . . .  s , ) ]  Uo(S,) (37) 

for n/> 1. The function v(t) is immediately obtained in the form 

v( t )=  ~ v,(t); Vo(t)=Te" (38) 
n = O  

and v,(t)= du,(t)/dt with (37). 
Thus, we have succeeded in solving formally the nonlinear diffusion- 

like equation 3 

r ~-~ ~p( , t) = 7O(r, t) - g~02(r, t) + ~(t)" V~(r, t) + q(r, t) (39) 
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This is a typical example of approximate separation of procedures. 
More explicit applications of the above formal solution will be discussed 
elsewhere. 

5. V A N  KAIVIPEN'S E X P A N S I O N ,  K U B O ' S  EXTENSIV ITY,  A N D  
P R I G O G I N E ' S  E N T R O P Y  P R O D U C T I O N  

In this section, we discuss a very important example of separation of 
procedures in nonequilibrium systems. 

For simplicity, we start from the master equation of the form (19 22) 

(, 

P(X, t) = - | W(X --+ X', t) dX' P(X, t) -g 
J 

+ f w ( x '  --, x,  t) P(X', t) dX' (42) 

where P(x, t) is the probability density of finding X at the value X at the 
time t and W(X ~ X', t) is the transition probability per unit time from X 
to X'. Following Kubo, (19'2~ we assume that the transition probability is 
proportional to the system size t2, namely W(X--+X+r,  t)=12w(x, r, t) 
with x=X/12,  and that P(X, t )=sP(x ,  t) with ~= 1/12. Then, the above 
master equation (42) is transformed into the following Hamilton4acobi 
form(19 22) 

e ~  P(x, t )+ Jt ~ P(x, t )=O (43) 

where 

J f (x ,  p, t )= f ( 1 - e  rP) w(x, r, t) dr 

n! p cn(x, t) (44) 
n = l  

and the nth moment cn(x, t) is defined by 

c.(x, t) = f rnw(x, r, t) dr (45) 

Equation (43) with (44) is also called the Kramers-Moyal equation. 
The above stochastic process is also expressed by the Langevin 

equation of the form (7). Van Kampen (2~) introduced the following 
separation of variables: 

x = y(t) + e-l/2~(t) (46) 



986 Suzuki 

Then, the main part y(t) satisfies the following deterministic equation: 

d 
dt y(t) = cl(y(t), t) (47) 

and the probability function /~(~, t) of 4, namely /~(~, t )=  
P(y(t) + e-  ~/2~(t), t), satisfies 

~ ~(~, &~(y(t), t) o c2(y(t), t) 62 
t) Oy(t) ~ ~/~(~' t)~ 2 042/~(~' t) (48) 

to order e~/2. Thus, the variable ~ is Gaussian in this approximation, and 
consequently the variance ( ~ 2 ( t ) ) - o ( t )  is given by the solution of the 
equation 

d 
dt o(t) = 2e'l(y(t), t) a(t) + c2(y(t), t) (49) 

with C'l(X, t )= Ocl(x, t)/Ox, as is well known. 
This is a typical example of separation of procedures, namely the 

separation of nonlinearity and fluctuation. 
Kubo proposed the following extensivity ansatz~9'2~ 

P(X, t) = C exp[~0(x ,  t)] (50) 

for a large system size with x = X/Y2. This is a generalization of the concept 
of the extensivity of equilibrium statistical thermodynamics to non- 
equilibrium systems. I have proven (21'22'24) this ansatz under some general 
conditions. It is easily shown (2~ 22) that the entropy function ~o(x, t) satisfies 
the equation 

& q~(x, t )+ ~ x,-~xCP(x, t), t = 0  (51) 

If itS(x, p, t) does not depend on the time t, namely ~ = ~ ( x ,  p), then the 
equilibrium solution ~peq(X) is given by the solution of the equation 

( )fer e' jq~ X,~xx~0eq(X) = ( 1 -  w(x,r) dr=O (52) 

with Pe =- &Oeq/dX. 
If we expand the entropy function ~o(x, t) as 

I x -  y( t ) ]  2 
~(x, t ) =  ~ ...  (53) 

2o(t) 
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then we obtain van Kampen's equations (47) and (49) on y(t) and a(t). 
Thus, Kubo's extensivity ansatz include van Kampen's limit as a special 
case. That is, Kubo's extensivity ansatz is also an example of separation of 
procedures. 

It should be remarked here that the function qs(t)=-(peq(y(t)) 
plays (22) the role of the Liapunov function or H-function, because 

d dy(t) d 
dt ~ ( t ) -  dt dy(t) qOeq(y(t)) 

d 
= --cl(y(t)) d - ~  (Peq(y(t)) 

= f  [1--rpe( t ) - -e  -'pe(')] w(y(t), r)dr<~O (54) 

with pe(t) = Oqgeq(Y(l))/c3y(t). Here we have used the relation 

f (1  --e w(y(t), r) (55) rpe(t)) dr = O 

and the inequality that eX~> 1 + x. In fact, it is easily shown in the ther- 
modynamic limit that the H-function defined by 

1 (- 
H(t) =-~ ] P(x, t)log[e(x, t)/P~q(X) ] dx (56) 

is equal to  (22} 

(ib(t) = - - (Peq(y( l ) )  (57)  

because we have 

( f (x ,  t) ,= f f(x,  t) P(x, t) dx = f(y(t),  t) (58) 

for an arbitrary function in the thermodynamic limit and because we have 
9(y(t), t)=0. In the above sense, the function (p(x, t) may be called the 
entropy function, and q0eq(y(t)) is the relative entropy of the system. 
Therefore, the function as(t ) defined by 

d2~(t) d 2 
as(t ) l  dt 2 =dt 2 (peq(y(t)) (59) 

plays the role of Prigogine's relative entropy production rate. In fact, we 
have 

dy(t) 
as(t) = d ~  @(t~) EPe(t) cl(y(t))] (60) 
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where we have assumed for simplicity that the transition probability w is 
time-independent. To discuss the sign of this entropy production rate more 
explicitly, we study the following simple situation in which c2(x)= 
c = const (>0 )  and c,(x) for n/> 3 are all vanishing. This corresponds to the 
Fokker Planck equation. Then, we have 

~ ( X ,  p )  = p e l ( x  ) -  a p2c2(x ) (61) 

Therefore, we get pe=  2c~(x)/c. Thus, we arrive at 

4 3 
e~(y(t)) ~ c,(y(t)) 

vytt) 
(62) 

That is, the sign of the entropy production rate is determined by that of the 
derivative of the first moment c~(y(t)). Consequently, in our case we arrive 
finally at the following conclusions: (1)The evolution criterion of the 
system in stable regions (namely OCl(X)/3x < 0) is governed by the entropy 
production minimum principle; i.e., as(t)>O, as was discussed by 
Prigogine(~ 31; but (2)the entropy production rate in unstable regions 
[namely, for 3Cl(X)/3x > 0] is negative; i.e., as(t)< O. 

The present semiclassical treatment of relaxation and fluctuation is not 
valid for the relaxation from or near the instability point, (6'u'12) as will be 
discussed later. 

6. SCALING THEORY OF TRANSIENT PHENOMENA,  
LIE ALGEBRA, AND SEPARATION OF PROCEDURES 

As has already been reported, 113'14) the solution of the linear Fokker 
Planck equation 

3 p(x, t ) = (  3 32 ) 
3t -- ~xTX + e-~X2 P(x, t) (63) 

is obtained by using the decomposition formula 

_ e _ ~  
e A + B = eAef(~)B, ric O -- - -  (64) 

o~ 

for the two-component Lie algebra (A, B) satisfying the commutation 
relation [A, B] = c~B. In the above Fokker-Planck equation (63), we may 
take(13,14) 

3 32 
A = -- t7 ~x x and B = te 3x--- 5 (65 ) 
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Then, the formal solution of (63) is given by (13'14) 

P(x, t) = e A +BP(x, O) = eAef(~)BP(x, 0) (66) 

with ~=27t .  The operations e A and e f~)B can be easily performed 
analytically, (13"~4) as is well known. This is locally extended to the 
following, more general form I25 27) 

e~lAl + ~2A2+ ... + ~pAp = e~lAle~2A2 . . . e~pA~ (67) 

for the p-component Lie algebra 

p 

[Ai, Aj] = Z c~Ak (68) 
k = l  

where the renormalized coefficients /~1, /~2,.-.,/~p are functions of the Lie 
coefficients {c~}. It is quite simple to obtain {/~j} when 

c~ = 0 for all k < max(i, j )  (69) 

This is equivalent to the solvable Lie algebra, and is also a typical example 
of separation of procedures. In fact, if we put ~15'16) 

e x ( ~ , A l  + ~ 2 A 2 +  --- + ~pAp)  = eX~lAiF2(x) (70) 

then we find that F2(0)= 1 and that 

d F 2 ( x ) = [ e  x~A~ (j~_ 2aJAj) eX~Atl F2(x ) (71) 

By the condition (69), Eq. (71) can be written in the form 

d 
F2(x) = [fi2(x) A2 + R3(x)] F2(x) (72) 

where R3 is a linear combination of the operators A3, A4 ..... Ap.  By 
integration, we obtain 

F2(x)=exp + {IXo [fl2(s) A2 + R3(s)] ds} (73) 

Repeating the same procedure, we arrive finally at (67) with some explicit 
expressions for {/~j}. 

Now we discuss the general nonlinear case (2) with the nonlinear drift 
term ~ ( x ) = y x + N ( x )  for 7 > 0 ,  where N(0 )=0 .  The point x = 0  is an 

822/49/5-6-8 



990 Suzuki 

unstable point of the system. As has generally been discussed 
previously, <H'12,1s'~6) the relaxation of the system from the unstable point 
x = 0 is asymptotically described by the following decoupled product: 

Pi~C~(x, t) = exp - t ~xx ~(x) exp tf(27t)e ~ x  2 P(x, 0) (74) 

This has been called the scaling solution of the relevant system. Thus, the 
scaling theory of transient phenomena ~11,j2,ls'16) is an example of 
asymptotic (or approximate) separation of procedures. As is well known, 
the above scaling solution describes quite well the relaxation, formation of 
macroscopic order, and fluctuation enhancement. This is complementary to 
the van Kampen and the Kubo treatments of nonequilibrium systems, as 
reviewed in Section 5. 

7. C A M  T H E O R Y  OF C O O P E R A T I V E  P H E N O M E N A  

It is also of great interest to discuss here the basic idea of the coherent 
anomaly method (CAM) of cooperative phenomena proposed by the 
present author. ~28 33t Our CAM theory is a typical example of separation of 
procedures, as will be discussed below. 

The basic idea of the CAM is to consider many self-consistent 
(mean-field) approximations systematically for each phenomenon and to 
extract a common feature inherent to them (namely the coherent anomaly), 
by making an analytic continuation of the degree of approximation. In any 
cluster-mean-field approximation, the singularity of the relevant response 
function (such as the susceptibility )~0) takes the classical form 
(Curie Weiss law). The key point of the CAM is that the coefficients or 
amplitudes of the "classical divergences" obtained in systematic mean-field 
approximations show "coherent anomalies," namely, they diverge 
systematically (or coherently) as the degree of approximation increases. By 
studying these coherent anomalies, we can estimate nonclassical (true) 
critical exponents. 

For example, we consider the susceptibility of ferromagnets. It takes 
the form 

z0 -~ ~(Tc)/~; ~ = ( T -  T , . ) /T ,  (75) 

near the approximate critical point Tc obtained in some approximation. 
The mean-field critical coefficient ~(Tc) depends on each approximation, 
namely each T,.. The coherent anomaly implies that 

~(Tc) ~ 6(Tc)- ~'; cS(T,.) = ( T c -  T,*)/T,* (76) 
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for small 6(T,.), where ~ denotes the so-called coherent-anomaly exponent 
and T~* the true critical point of the system. The variable 8(To) denotes the 
degree of approximation. The coherent-anomaly exponent ~ can be 
estimated to any accuracy from the coherent-anomaly data ~(Tc) as a 
function of T,. or (5(T,), which can be calculated explicitly up to any 
required digits. This is one of the great merits of the CAM theory. In this 
sense, the CAM may be called a "precise" theoretical approach to critical 
phenomena, which corresponds to accurate experimental measurements. 

It should be also emphasized here that the divergence of the relevant 
function (such as the susceptibility) induced by the long-range order due to 
the bifurcation (namely the Curie Weiss-type singularity) is separated from 
the remaining singularity induced by the intrinsic fluctuation of the system 
in the CAM theory. In this sense, the CAM is a typical example of 
separation of procedures. There have been many applications of the 
CAM.(28 33) 
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